본문 바로 가기

로고

국내 최대 기계·건설 공학연구정보
통합검색 화살표
  • 시편절단기 Mecatome T180
  • 학술행사일정

    학술행사 제목 게시판 내용
    행사명 대한전기학회 강화학습 튜토리얼 워크샵
    전공분류
    행사분류 Workshop
    행사관련 홈페이지 www.kiee.or.kr/board/?_0000_method=view&ncode=a002&num=2305&page=1
    개최기간 2019-08-05 ~ 2019-08-07
    개최지
    주최기관 대한전기학회
    주최기관 홈페이지 www.kiee.or.kr
    후원기관
    문의처 전화번호 02-940-8387

    대한전기학회 정보 및 제어 부문회 산하의 자율이동체정보처리연구회와 제어로봇시스템학회 산하의 제어이론연구회 주관으로 강화학습


    튜토리업 워크샵을 개최합니다. 


    관심 있는 분들의 많은 참여 바랍니다.
     


    일  시: 2019년 8월 5일(월)~7일(수), 9시 30분 – 18시 30분 
     


    장  소: 서울과학기술대학교 테크노큐브동 403호
     


    주  최: (사)대한전기학회 정보 및 제어 부문회, (사)제어로봇시스템학회
     


    강  사: 박주영 (고려대학교 제어계측공학과 교수)
     


    등록비: 학생 30만원, 일반 40만원, 중식 3일 제공 (사전등록만 가능) 석사과정까지 핵생입니다.


                     등록 링크 바로가기
     


    사전 등록마감 : 7월 29일(월)까지
     


    인  원:  45명 선착순
     


    참가자 준비물: 아래 딥러닝 라이브러리가 준비된 개인 노트북 
     


    문  의: 자율이동체 정보처리연구회 위원장  (광운대학교 02-940-8387)


             대한전기학회 팀장 : 02-553-0151
     


    [강의 상세 소개]


    강사

    박주영

    제목

    최신 강화학습 기술의 방법론, 구현 및 미래에 관한 고찰

    초록

      깊은 강화학습(Deep Reinforcement Learning)은 현대 인공지능 기술 중 가장 활발한 연구가 이루어지는 분야 중 하나로써,


      강화학습, 제어이론 및 딥러닝 기술이 결합되어 시너지 효과를 거두며 급속한 발전을 이루고 있다. 본 강좌에서는 깊은


      강화학습 기술의 과거와 현재를 구성하는 주요 주제인 Controlled Ito Process, Stochastic Optimal Control, Hamilton-Jacobi-   


      Bellman Equation, Markov Decision Process, Deep Learning, DQN, Actor-Critic, GAE, DDPG, AlphaGoZero/AlphaZero,


      Maxent RL, World Model/Planet, Hierarchical Reinforcement Learning  등의 개념을 코딩 기술과 함께 살펴보고,


     이와 관련한 미래 기술의 방향에 대해 생각해본다.

    일정표


     

     Day 1: 


      이론(Random Walk, Brownian Motion, CLT, SDE, Controlled Ito Process, HJB, MDP, TD, SARSA, Q-Learning, AC 등) +


      코딩  (Python, PyTorch 기초 및 응용)


     Day 2: 


      이론(Deep Learning, PG, DDPG, Bellman Operator, DQN, Rainbow, NAF, AlphaGo Zero, Alpha Zero, Model-based RL,           


      Smoothed Bellman Error Embedding 등) + 코딩(RL 방법론 + 주요 generative models 구현)


     Day 3: 


      이론(Maxent RL, SQL, SAC, Twin SAC with entropy constraint 등) + 코딩(Maxent RL 등)

    약력

     1993-현재: 고려대학교 제어계측공학과(전자기계융합공학과) 교수


     1992: University of Texas at Austin 전기및컴퓨터공학과 박사


     1985: KAIST 석사


     1983: 서울대학교 전기공학과 학사


      홈페이지 http://sites.google.com/site/rbfpark3

    필요


    라이브러리

     실습을 위해 다음과 같은 라이브러리가 필요합니다.


     python3.7, PyTorch 1.1.0(stable), torchvision 0.3.0, 


     Jupyter notebook (0.35.5), Matplotlib (3.1.0)


     scikit-learn (1.2.1), gym (0.12.5), pandas (0.23.1)

    서브 사이드

    서브 우측상단1