본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • Particleworks(CFD S/W)
  • 국내학술지

    202 0
    국내학술지 제목 게시판 내용
    제목(국문) BCI 시스템을 위한 Fruit Fly Optimization 알고리즘 기반 최적의 EEG 채널 선택 기법
    제목(영문) Fruit Fly Optimization based EEG Channel Selection Method for BCI
    저자 - (Xin-Yang Yu ,The School of Electrical Electronics Engineering, Chung-Ang University ) ▷공저자네트워크등록하기
    유제훈 (Je-Hun Yu ,중앙대학교 전기전자공학과 ) ▷공저자네트워크등록하기
    심귀보 (Kwee-Bo Sim ,중앙대학교 전기전자공학부 ) ▷공저자네트워크등록하기
    초록
    초록(영문)

    A brain-computer interface or BCI provides an alternative method for acting on the world. Brain signals can be recorded from the electrical activity along the scalp using an electrode cap. By analyzing the EEG; it is possible to determine whether a person is thinking about his/her hand or foot movement and this information can be transferred to a machine and then translated into commands. However, we do not know which information relates to motor imagery and which channel is good for extracting features. A general approach is to use all electronic channels to analyze the EEG signals, but this causes many problems, such as overfitting and problems removing noisy and artificial signals. To overcome these problems, in this paper we used a new optimization method called the Fruit Fly optimization algorithm (FOA) to select the best channels and then combine them with CSP method to extract features to improve the classification accuracy by linear discriminant analysis. We also used particle swarm optimization (PSO) and a genetic algorithm (GA) to select the optimal EEG channel and compared the performance with that of the FOA algorithm. The results show that for some subjects, the FOA algorithm is a better method for selecting the optimal EEG channel in a short time

    keyword brain-computer interface, fruit fly optimization, particle swarm optimization, Common spatial pattern
    저널명 제어로봇시스템학회논문지 ▷관련저널보기
    VOL 22
    PAGE 0199
    발표년도 2016
    국문File 국문다운로드
    영문File
    • 페이스북아이콘
    • 트위터 아이콘

    서브 사이드

    서브 우측상단1