본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • 트랙백
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing
    저자 Tweedt, Daniel L.
    Keyword AERODYNAMIC CHARACTERISTICS;; AERODYNAMIC NOISE;; COMPUTATIONAL FLUID DYNAMICS;; FAN BLADES;; LOW SPEED WIND TUNNELS;; PITCH (INCLINATION); PRESSURE RATIO;; ROTOR SPEED;; THRUST
    URL http://hdl.handle.net/2060/20130001702
    보고서번호 NASA/CR-2012-217815
    발행년도 2012
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape;; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan systems, the aerodynamic effectiveness of blade morphing is demonstrated by the configurations analyzed. In particular, for the Advanced Ducted Propulsor fan it is demonstrated that the performance levels of the original variable-pitch baseline design can be achieved using blade morphing instead of variable pitch, and for the Source Diagnostic Test fan the performance at important off-design operating points is substantially increased with blade morphing.

    서브 사이드

    서브 우측상단1