본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • 유니맷 클래식에듀
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations
    저자 Couluris, G. J.;; Signor, D.;; Phillips, J.
    Keyword AIR TRAFFIC CONTROL;; AIRCRAFT LANDING;; AIRCRAFT PERFORMANCE;; AIRPORTS;; AIRSPACE;; CIVIL AVIATION;; COMPUTERIZED SIMULATION;; CRUISING FLIGHT;; DESCENT;; NATIONAL AIRSPACE SYSTEM;; RUNWAYS;; SCHEDULING;; SHORT TAKEOFF AIRCRAFT;; SUBSONIC SPEED;; TRANSONIC SPEED
    URL http://hdl.handle.net/2060/20110008687
    보고서번호 NASA/CR-2010-216392
    발행년도 2010
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration''s Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA''s Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally separated from each other geographically and in altitude during tenninal airspace approach and departure operations, and each use a different arrival runway. AvTeminal implements its unique Focal-point Scheduling Process to sequence, space and delay aircraft to resolve spacing and overtake conflicts among flights in the airspace and airport system serving KEWR. This Process effectively models integrated arrival and departure operations. AvTerminal assesses acceptance rates and delay magnitude and causality at selected locations, including en route outer boundary fixes, tenninal airspace arrival and departure boundary fixes, terminal airspace arrival merge and departure diverge fixes, and runway landing and takeoff runways. The analysis compares the resulting capacity impacts, flight delays and delay sources between CESTOL and conventional KEWR operations. AvTerminal quantitative results showed that CESTOL has significant capability to increase airport arrival acceptance rates ࿃-40% at KEWR) by taking advantage of otherwise underused airspace and runways where available. The study extrapolates the AvTerminal-derived KEWR peak arrival and departure acceptance rates to estimate capacity parameter values for each of the OEP airports in the ACES modeling of traffic through the entire NAS network. The extrapolations of acceptance rates allow full, partial or no achievement of CESTOL capacity gains at an OEP airport as determined by assessments of the degree to which local procedures allow leveraging of CESTOL capabilities. These assessments consider each OEP airport''s runway geometries, runway system configurations, airport and airspace operations, and potential CESTOL traffic loadings. The ACES modeling, simulates airport and airspace spacing constraints imposed by airport runway system, terminal and en route air traffic control and traffic flow management operations using airport acceptance rates representing conventional-aircraft-only and CESTOL-mixed operations. CEOL aircraft are assumed to have Mach 0.8, and alternatively Mach 0.7, cruise speeds to examine compatibility with conventional aircraft operations in common airspace. The ACES results provides estimates of CESTOL delay impact NAS-wide and at OEP airports due to changes in OEP airport acceptance rates and changes in en route airspace potential conflict rates. Preliminary results show meaningful nationwide delay reductions ྴ%) due to CESTOL operations at 34 major domestic airports.

    서브 사이드

    서브 우측상단1