본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • AFDEX 2D/3D
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 The Mechanical Performance of Subscale Candidate Elastomer Docking Seals
    저자 Bastrzyk, Marta B.;; Daniels, Christopher C.
    Keyword ADHESION;; COMPRESSION TESTS;; DISPLACEMENT;; ELASTOMERS;; GASKETS;; INTERNATIONAL SPACE STATION;; LEAKAGE;; LOW EARTH ORBITS;; MAGNITUDE;; MECHANICAL ENGINEERING;; O RING SEALS;; SPACECRAFT DOCKING;; TEMPERATURE DEPENDENCE
    URL http://hdl.handle.net/2060/20100039390
    보고서번호 NASA/CR-2010-216890
    발행년도 2010
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.

    서브 사이드

    서브 우측상단1