본문 바로 가기

로고

국내 최대 기계 및 로봇 연구정보
통합검색 화살표
  • ProX DMP 320
  • 기술보고서

    기술보고서 게시판 내용
    타이틀 Filtering Water by Use of Ultrasonically Vibrated Nanotubes
    저자 Gavalas, Lillian Susan
    Keyword CARBON NANOTUBES;; SOUND TRANSDUCERS;; ELECTROACOUSTIC TRANSDUCERS;; INTERFACIAL TENSION;; PIEZOELECTRICITY;; WASTE WATER;; FILTRATION;; MOLECULES;; SIMULATION;; SIZE DISTRIBUTION;;
    URL http://hdl.handle.net/2060/20090032138
    보고서번호 MSC-24180-1
    발행년도 2009
    출처 NTRS (NASA Technical Report Server)
    ABSTRACT Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can be expected to become aligned into helical columns that exhibit properties of both hexagonal ice crystals and liquid water

    서브 사이드

    서브 우측상단1